

OAC-3000 Controller

Product Data

Outdoor Airflow Controller Module with Network Control Connection for MP-Bus Actuators

- ☐ Compatible with GreenTrol IAT integrated thermal dispersion airflow/temperature sensors or approved BACnet MS/TP airflow measuring devices
- □ 24 VAC/DC or MS/TP BACnet binary input activates occupied mode operation
- □ Provide airflow setpoint control, CO₂-DCV or population based-DCV during occupied mode
- □ Accepts approved BACnet MS/TP CO₂ sensors or occupancy counters when DCV is required
- ☐ Clamp DCV airflow rates between minimum and maximum airflow limits
- ☐ Supports unoccupied airflow setpoint control
- Built-in notification alarms
- Contact closure relay can be assigned to notification alarms or active control mode
- MS/TP BACnet connection
- Compensate for damper hysteresis, filter loading, wind, stack and fan speed variations
- √ Provide continuous verification of intake flow rates
- √ Demonstrate compliance with ASHRAE Standards 62.1, 90.1 and 189.1
- √ Satisfy LEED prerequisites and document code compliance
- √ Improve indoor air quality and thermal comfort
- √ Save energy

The OAC-3000 can be provided with a single integrated IAT-DI duct probe, one or two integrated IAT-UI or IAT-US universal mount probes or an approved external BACnet MS/TP airflow measurement device.

The OAC-3000 interfaces with approved MS/TP BACnet CO₂ sensors and occupancy counters when DCV is required.

The OAC-3000 modulates a network MP-bus actuator to maintain the outdoor airflow rate when an external binary trigger is active (i.e. occupied mode). The binary trigger is typically is provided by a thermostat or other analog or MS/TP BACnet binary output. The trigger can also be provided by the 24 VAC control signal used when a two-position actuator is provided for outdoor air control (replace the two-position actuator with an MP-bus actuator).

Advanced logic and airflow measurement improves traditional CO_2 -DCV when demand control ventilation is required. The OAC-3000 controller resets the outdoor airflow setpoint between user defined minimum and maximum airflow limits to maintain either a user defined fixed CO_2 level or variable airflow setpoint based on the population using a built-in CO_2 /airflow counting algorithm or external occupancy counter.

The OAC-3000 controller interfaces with most MS/TP BACnet building automation systems and supports full read/write privileges as a BACnet 1/8 load master. An RS-485 signal isolator is available when an isolated MS/TP network is required.

OAC-3000 Controller Module Technical Specifications

Functionality

Outdoor Air Control (OAC) Modes Supported

FLOW: Maintains a user defined airflow setpoint

 $\mbox{\sc CO2}\xsp{:}$ Maintains a user defined $\mbox{\sc CO}_2$ level by resetting the outdoor

airflow setpoint (requires a CO₂ sensor)

CO2/OAF: Maintains a calculated outdoor airflow setpoint based on the estimated ventilation zone population (requires a CO₂ sensor)

COUNT: Maintains a calculated outdoor airflow setpoint based on the occupancy counter population (requires an occupancy counter) FIXED: Maintains a fixed damper position (no control)

Unoccupied Air Control (UAC) Mode Option: Yes, maintains a user defined airflow setpoint

Notification Alarms

"Unoccupied Mode" High/Low Airflow Alarm

"Outdoor Airflow Mode" High/Low Airflow Alarm

"All Modes" CO₂ Alarm (requires a CO₂ sensor)

"All Modes" System Trouble Alarm

Note: Alarms can be assigned to the contact closure relay

User Interface

Display: 16-character alpha-numeric LCD

Navigation: 4-button interface

Integrated Sensor Capability

Type: Accepts GreenTrol IAT-DI, IAT-UI and IAT-US Thermal Dispersion Airflow and Temperature Measurement Probe (required unless an external MS/TP airflow measurement device is provided). See appropriate IAT product data sheet for probe information.

Available Configurations: IAT-DI Probes

Single Probe: 1 probe x 1 or 2 sensor nodes/probe Available Configurations: IAT-UI and IAT-US Probes Single Probe: 1 probe x 1 sensor node/probe Dual Probe: 2 probes x 1 sensor node/probe

Binary Input

BI1

Type: Binary Input (BI1)

Assignment: Mode activation trigger signal Configurable Ranges: 0-24VAC or 0-24VDC

Trigger Threshold:

VAC configuration: 6.5 VAC VDC Configuration: 8 VDC

MP-Bus Connection

MP1

Assignment: MP-Bus proportional actuator network signal (requires

MP-bus cable, sold separately)

Contact Closure Relay

R1

Type: Dry contact w/ onboard jumper to drive a remote LED

Assignment: OAC alarms or Control Mode

Status: Normally Open (N.O.)

Rating: 30 VDC or 24 VAC @ 3 amp. max.

Network Connection

N1

Type: Non-isolated MS/TP BACnet master connection (provide an

RS-485 network isolator if isolation is required) B.A.S. Object Read/Write Access: Yes

Device Load: 1/8 load

Supported Baud Rates: 9.6, 19.2, 38.4 and 76.8 kbaud MS/TP BACnet Airflow Sensor Capability: One GreenTrol Automation or approved third-party airflow measurement device (cannot be used if an integrated airflow measurement device is connected).

MS/TP BACnet CO_2 Sensor Capability: One GreenTrol Automation or approved third-party space mounted or return air CO_2 sensor MS/TP BACnet Occupancy Counter Capability: One to four GreenTrol Automation or approved third-party occupancy counters

Environmental Limits, Power Requirements & Dimensions

Environmental Limits

Temperature: -20 to 120 °F [-28.9 to 48.9 °C]

Humidity: 5 to 95%

Important: Provide a weather-proof enclosure if the controller module is

mounted outdoors

Power Requirement: 24 VAC (22.8 to 26.4 under load) @8.5V-A

Dimensions:

IAT-DI Probe

Product Data

Insertion Mount Thermal Dispersion Airflow/Temperature Measurement Probe for Round Ducts

Compatible with GreenTrol transmitters and
controllers that accept IAT integrated
sensors
Thermal dispersion technology

- ☐ Calibrated from 0 to 3,000 FPM
- ☐ Stable bead-in-glass thermistor sensors
- NIST traceable airflow and temperature measurement
- Calibrated to volumetric airflow standards
- Accurate and repeatable
- □ Field calibration is not required
- ☐ Fits standard 4 to 16 inch round ducts
- Easy to install insertion probe design
- Available in aluminum or stainless steel
- ☐ FEP plenum rated cable with terminal DIN connector plug provided

Typical Installations:

- Hospital, laboratory and clean room ducts
- Terminal boxes
- Outdoor air intakes to fan coils
- Makeup air ducts to air handlers

IAT (integrated airflow/temperature) sensors reduce cost by eliminating the redundancy of a separate transmitter for airflow and temperature measurement. The processing circuitry and firmware is integrated into one of GreenTrol's microprocessorbased transmitters or application specific controllers.

The IAT-DI airflow/temperature sensor is designed for duct insertion applications. Probes are available with one or two sensor nodes. Installed airflow accuracy is ±4% of reading to NIST traceable standards when installed in accordance to published placement guidelines.

The IAT-DI sensor probe uses the principal of thermal dispersion to determine the airflow rate. Thermal dispersion is ideal for HVAC applications that typically require measurement of low air velocities. Each sensing node uses two thermistors to determine airflow. One thermistor is self-heated above ambient while a second thermistor determines the ambient air temperature. The power dissipated into the airstream is directly related to the airflow rate.

Each thermistor body is a hermetically sealed bead-in-glass probe. Bead-in-glass thermistors have demonstrated extreme stability and superior performance over chip type thermistors used by other manufacturers. The bead-in-glass sensor used has been time tested for over 35 years by GreenTrol's sister company, EBTRON. Thermistors are potted in a waterproof sensor assembly and are designed for years of trouble-free operation.

Each sensing node is individually calibrated at 7 points in highperformance wind tunnels. Transmitters and controllers measure and process each individual sensor node independently. The result is the true average airflow rate and temperature when more than one sensing node is applied.

IAT-DI Technical Specifications

Functionality

Airflow Measurement: Provides individual sensor node airflow rates to

compatible GreenTrol transmitters and controllers

Temperature Measurement: Provides individual sensor node temperatures to compatible GreenTrol transmitters and controllers

Airflow/Temperature Measurement Probe

Type: -DI Duct Insertion Thermal Dispersion Airflow and Temperature

Measurement Probe

Available Configurations

4 inch [102 mm]: 1 probe x 1 sensor node

5 to 16 inch [127 to 406 mm]: 1 probe x 2 sensor nodes

Sensing Node Sensors

Self-heated sensor: Precision, hermetically sealed, bead-in-glass

thermistor probe

Temperature sensor: Precision, hermetically sealed, bead-in-glass

thermistor probe

Probe Tube

Material: Mill finish 6063 aluminum (optional: 316 SS)

Probe Mounting Brackets Material: 304 stainless steel Probe Mounting: Insertion Sensing Node Housing

Material: Glass-filled Polypropylene

Sensor Potting Materials: Waterproof marine epoxy

Sensing Node Internal Wiring Material: Kynar® coated copper Probe to Transmitter Cables

Material: FEP jacket, plenum rated CMP/CL2P, UL/cUL listed, -67 to

392 °F [-55 to 200 °C], UV tolerant

Standard Lengths: 3, 10, 25 and 50 ft. [0.91, 3.1, 7.6 and 15.2 m]

Connecting Plug: 0.60" [15.24 mm] nominal diameter

Airflow Measurement

Averaging Method: Independent, arithmetic average

Installed Accuracy: Better than ±4% of reading to NIST traceable

airflow standards

Calibrated Range: 0 to 3,000 fpm [0 to 15.24 m/s]

Calibration Points: 7
Temperature Measurement

Averaging Method: Independent, velocity weighted

Accuracy: ±0.15°F [0.08 °C]

Environmental Limits & Power Requirements

Environmental Limits

Temperature: -20 to 160 °F [-28.9 to 71.1 °C]

Note: Temperature limits for operation may be limited by the

transmitter or controller selected

Humidity: 0 to 100%

Power Requirement: Power is provided by the transmitter or controller

and is included in the transmitter/controller power requirement

specification